Recipes for Baking Black Forest Databases - Building and Querying Black Hole Merger Trees from Cosmological Simulations

نویسندگان

  • Julio López Hernandez
  • Colin Degraf
  • Tiziana DiMatteo
  • Bin Fu
  • Eugene Fink
  • Garth A. Gibson
چکیده

Large-scale N-body simulations play an important role in advancing our understanding of the formation and evolution of large structures in the universe. These computations require a large number of particles, in the order of 10-100 of billions, to realistically model phenomena such as the formation of galaxies. Among these particles, black holes play a dominant role on the formation of these structure. The properties of the black holes need to be assembled in merger tree histories to model the process where two or more black holes merge to form a larger one. In the past, these analyses have been carried out with custom approaches that no longer scale to the size of black hole datasets produced by current cosmological simulations. We present algorithms and strategies to store, in relational databases (RDBMS), a forest of black hole merger trees. We implemented this approach and present results with datasets containing 0.5 billion time series records belonging to over 2 million black holes. We demonstrate that this is a feasible approach to support interactive analysis and enables flexible exploration of black hole forest datasets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recipes for Baking Black Forest Databases

Large-scale N-body simulations play an important role in advancing our understanding of the formation and evolution of large structures in the universe. These computations require a large number of particles, in the order of 10-100 of billions, to realistically model phenomena such as the formation of galaxies. Among these particles, black holes play a dominant role on the formation of these st...

متن کامل

Predicting the Direction of the Final Spin from the Coalescence of Two Black Holes

Knowledge of the spin of the black hole resulting from the merger of a generic black-hole binary is of great importance for studying the cosmological evolution of supermassive black holes. Several attempts have been made to model the spin via simple expressions exploiting the results of numerical-relativity simulations. While these expressions are in reasonable agreement with the simulations, t...

متن کامل

Remnant Masses, Spins and Recoils from the Merger of Generic Black-hole Binaries

We obtain empirical formulae to describe the final remnant black hole mass, spin, and recoil velocity for the remnant product of the merger of orbiting black-hole binaries with arbitrary mass ratios and spins. Our formulae are based on the post-Newtonian scaling with amplitude parameters chosen by a least-squares fit of recently available fully nonlinear numerical simulations and are relevant t...

متن کامل

The Cosmological History of Accretion onto Dark Halos and Supermassive Black Holes

Aims. We investigate the cosmological growth of dark halos and follow the consequences of coeval growth for the accretion history of associated supermassive black holes. Methods. The Press-Schechter approximation is used to obtain an analytic expression for the mean rate of growth of dark matter halos. Dark halo accretion rates are compared with numerical work and the consequences for understan...

متن کامل

Binary black hole merger dynamics and waveforms

We study dynamics and radiation generation in the last few orbits and merger of a binary black hole system, applying recently developed techniques for simulations of moving black holes. Our analysis of the gravitational radiation waveforms and dynamical black hole trajectories produces a consistent picture for a set of simulations with black holes beginning on circular-orbit trajectories at a v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011